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SUMMARY

This paper presents a novel multidimensional characteristic-based (MCB) upwind method for the solution
of incompressible Navier–Stokes equations. As opposed to the conventional characteristic-based (CB)
schemes, it is genuinely multidimensional in that the local characteristic paths, along which information
is propagated, are used. For the first time, the multidimensional characteristic structure of incompressible
flows modified by artificial compressibility is extracted and used to construct an inherent multidimensional
upwind scheme. The new proposed MCB scheme in conjunction with the finite-volume discretization is
employed to model the convective fluxes. Using this formulation, the steady two-dimensional incompress-
ible flow in a lid-driven cavity is solved for a wide range of Reynolds numbers. It was found that the
new proposed scheme presents more accurate results than the conventional CB scheme in both their first-
and second-order counterparts in the case of cavity flow. Also, results obtained with second-order MCB
scheme in some cases are more accurate than the central scheme that in turn provides exact second-order
discretization in this grid. With this inherent upwinding technique for evaluating convective fluxes at cell
interfaces, no artificial viscosity is required even at high Reynolds numbers. Another remarkable advantage
of MCB scheme lies in its faster convergence rate with respect to the CB scheme that is found to exhibit
substantial delays in convergence reported in the literature. The results obtained using new proposed
scheme are in good agreement with the standard benchmark solutions in the literature. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The concept of artificial compressibility was first introduced by Chorin [1]. With this idea, the
continuity and momentum equations are coupled to each other and it is possible to use pseudo-time
marching methods for obtaining steady-state solutions. Meanwhile, the nature of incompressible
flow equations is changed to hyperbolic one. In pseudo-time marching, the addition of artificial
compressibility has no effect on the steady-state results. However, it may affect the convergence
process [2]. In pseudo-time marching, the numerical waves created are used for propagating
information throughout the solution domain and driving the divergence of velocity to zero. Different
numerical schemes have been used for discretization of artificial compressibility equations. Among
them, Farmer et al. have used a central scheme with Jameson’s artificial viscosity to prevent the
pressure–velocity decoupling [3]. The discretization schemes and solvers developed for artificial
compressibility have many similarities with the methods developed for compressible flows. Many
researchers used Godunov-type schemes to discretize the equations of artificial compressibility.
Rogers and Kwak [4], Liu et al. [5], Kallinderis and Ahn [6] and Yuan [7] used Roe’s flux difference
splitting scheme for solution of incompressible flow fields. Their Roe’s averaging approach was
applied to artificial compressibility equations and obtained fluxes in finite-volume discretization are
functions of artificial compressibility parameter. Traditionally, the method of characteristics is used
primarily for compressible flow calculations. By introducing the pseudo-time derivative in Chorin’s
formulation, it is possible that the incompressible flow equations be solved by a similar method
of characteristics. For the first time Drikakis et al. used one-dimensional characteristic relations to
calculate the convective fluxes in finite-volume discretization for two-dimensional incompressible
flow in a curvilinear coordinate system on structured grids [8]. The method was developed for
three-dimensional flows [9] and further developed to incorporate multigrid techniques [10].

The above-mentioned method was extended by Zhao et al. for simulation of incompressible
flows and convection heat transfer on unstructured two- and three-dimensional grids [11–15].
Flow variables are calculated along characteristics paths in the direction normal to the surface of
a control volume and their initial values are interpolated based on the signs of the corresponding
characteristic speeds. The characteristic-based (CB) scheme has been used for a broad range
of incompressible flow simulations. Siong et al. used a CB implicit finite-volume method for
calculating incompressible flow in porous media on unstructured grids [16]. Drikakis and Shapiro
applied the artificial compressibility method for solving flows with various densities by using a
locally one-dimensional characteristic scheme [17, 18]. Other case studies about using the CB
schemes in conjunction with artificial compressibility for modeling incompressible flow can be
found in References [19–23].

In all of the examples in the literature, the CB schemes for artificial compressibility equations
are constructed under the assumption of locally one-dimensional flow in specific directions. All
extensions of CB upwind schemes to two and three dimensions ignore the multidimensional
nature of flow and advance the solution by ‘splitting’ that is to say, through a sequence of
one-dimensional operators. To take into account the real multidimensional nature of flow, it is
necessary to devise methods that consider the actual directions in which information is propagated.
Different ideas have been proposed for the definition of genuinely multidimensional schemes for
compressible Euler equations such as [24–29], whereas in the case of incompressible flows it has
not yet been accomplished because of the difficulties that appear in mathematical characteristics
of artificial compressibility equations. It is found from the literature that all of the CB schemes for
incompressible flows with artificial compressibility use one-dimensional characteristic relations that
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exhibit substantial delays in terms of convergence in certain studies [23, 30, 31]; they also do not
obey the real physical nature of flow. In this study, we derived for the first time, the mathematical
structure of two-dimensional characteristics for incompressible flow equations in conjunction with
artificial compressibility. Using derived compatibility relations, a genuinely upwind scheme for
two-dimensional incompressible viscous flows is presented. The new scheme is applied for two-
dimensional lid-driven cavity flow for a wide range of Reynolds numbers, in order to show
its ability. Detailed results in comparison with the conventional centered and CB schemes are
presented.

2. CHARACTERISTIC STRUCTURE FOR TWO-DIMENSIONAL
INCOMPRESSIBLE FLOWS

To derive the characteristic relations of incompressible flows, their corresponding ‘Euler equa-
tions’ are considered [11]. These equations modified by artificial compressibility for deriving
two-dimensional characteristic structures are
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To obtain characteristic structure of equations, a characteristic surface in the form of f (x, y, t)=0
is assumed. Using the kinematics relations for relating the partial derivatives to exact derivatives
corresponding to the assumed surface, one obtains the following system of equations [32]:

⎡
⎢⎣

ft/� fx fy

fx � 0

fy 0 �

⎤
⎥⎦

⎡
⎢⎣
dp

du

dv

⎤
⎥⎦=

⎡
⎢⎣
0

0

0

⎤
⎥⎦ (2)

where the subscripts stand for the partial differentiation and � is defined as
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For compatibility requirements of Equations (2), the determinant of coefficient matrix is set to
zero; hence

�=0, �= �

ft
( f 2x + f 2y ) (4)

We assumed the pseudo-velocity vector V̂ =(u,v,1) and normal vector to characteristic surface
n̂=(cos�,sin�,nt ) alike compressible Euler equations [33], in which � shows the wave direction.
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Expressing Equations (4) in terms of vectors V̂ and n̂, two types of characteristic surface corre-
sponding to following relations are obtained:

V̂ · n̂ = 0

V̂ · n̂ = �

nt

(5)

where nt = ft/
√

( f 2x + f 2y ) denotes the t-component of normal vector. By some mathematical

operations, nt takes the following form:

nt = −(u cos�+v sin�)±√
(u cos�+v sin�)2+4�

2
=n1,n2 (6)

Regarding the dual roots of second relation in Equation (5) as a function of nt , similar to compress-
ible Euler equations, dual characteristic surfaces would exist. With straightforward mathematical
operations it can be proven that the roots have always different signs. This depicts the growth
of zones of influence and dependence around the pseudo-streamlines. The projection of normal
vectors nt in the x–y plane lies inside a unit circle. Two roots of Equation (6) for nt denote
the biplanes tangent to characteristic surfaces passing through a certain point and producing the
Mach cones. Also, Mach conoid is tangent to Mach cone at each point passing through it. Along
bicharacteristics, the characteristic surfaces are tangent to passing Mach cone. In fact, the charac-
teristic paths corresponding to the first equation of (5) demonstrate the pseudo-pathlines and the
second one corresponds to the pseudo-acoustic waves propagating within the incompressible flow
field. To specify the wave paths on a Mach conoid, consider an assumed characteristic path on
f (x, y, t)=0. Taking d f/dt=0 yields

� f

�t
+ dx

dt

� f

�x
+ dy

dt

� f

�y
=0 (7)

From Equation (7) one obtains

nt +(dx/dt)cos�+(dy/dt)sin�=0 (8)

Comparing Equations (5) and (8), the following relations would result:

nt +(dx/dt)cos�+(dy/dt)sin� = 0

nt +u cos�+v sin� = �2/(�nt )
(9)

Combining the above relations with each other results in the following:

(u−dx/dt)cos�+(v−dy/dt)sin�=�2/(�nt ) (10)
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Figure 1. Characteristic structure for incompressible flow defined by artificial compressibility equations.

Therefore, the equations for characteristic paths take the form:

dx

dt
= u− �

nt
cos�

dy

dt
= v− �

nt
sin�

(11)

where � is the wave angle. By considering Equation (6), it is concluded that similar to compressible
Euler equations, dual characteristic surfaces would exist, so that their corresponding tangential
planes construct two Mach cones that extend from a certain point, namely domain of dependence
and domain of influence (Figure 1). Similar approaches for two-dimensional characteristic structure
of compressible Euler equations have been presented in References [24–26, 33].

As it is seen in Figure 1, for any angle in the range 0���2� there exist two bicharacteristics.
Unlike compressible Euler equations, here the cross-section of Mach cone with the x–y plane
produces an ellipse (called Mach ellipse) having minor and major axes parallel to the coordinate
axes. The compatibility relations are obtained from Equations (2) by the insertion of corresponding
values of � from Equations (4), as

�

nt
du+cos�dp = 0

�

nt
dv+sin�dp = 0

(12)

Equations (12) are valid for both nt =n1,n2, which show the governing compatibility relations
along bicharacteristics.
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3. GOVERNING EQUATIONS

The Navier–Stokes equations for two-dimensional incompressible flows modified by the artificial
compressibility can be expressed as

∫ ∫
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Here W is the vector of primitive variables, and F, G and R, S are convective and viscous flux
vectors, respectively. The artificial compressibility parameter and Reynolds number are denoted by
� and Re, respectively. The above equations have been nondimensionalized based on the following
scalings:

(x, y)=(x∗/ l∗, y∗/ l∗), t= t∗

l∗/Uref
, (u,v)=(u∗/Uref,v

∗/Uref), p= p∗− pref
�refU

2
ref

(14)

The discretized form of Equation (13) is expressed as

Ai j
�Wi j

�t
+

4∑
k=1

(F�y−G�x)k =
4∑

k=1
(R�y−S�x)k (15)

where Ai j is the cell area.

4. NUMERICAL SCHEME

The characteristic relations derived in Section 2 can be used for flux treatment in finite volume
or data reconstruction in finite difference methods. It is possible to select different characteristic
paths and use their corresponding compatibility relations in order to estimate the cell interface
values from previous time level. In this study, a new multidimensional characteristic-based (MCB)
finite-volume method has been used for incompressible Navier–Stokes equations. The compatibility
relations (12) are used to model convective fluxes, whereas the viscous fluxes are computed with
conventional averaging method such as [34–36].

4.1. Convective fluxes

To evaluate the convective interface fluxes from previous time level quantities, four pseudo-acoustic
waves with the projected propagation paths parallel to the x- and y-axes are selected. According to
Figure 2, the intersection of local Mach cone corresponding to point M, on the two cells interfaces,
with the x–y plane, demonstrates the real two-dimensional nature of information propagation.
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Figure 2. Intersection of local Mach cone with previous time level plane and proposed scheme stencil.

In order to take into account the physical behavior of domain of influence for point M, four
pseudo-waves corresponding to wave angles �=0,�/2,�,3�/2 are selected and Equations
(12) are discretized along them. This is an alternative, such as done for compressible wave
models introduced by Roe and coworkers [37–39]. It is possible to select different numbers and
directions for waves and use their corresponding compatibility relations for evaluating interface
values.

By selecting the above waves, to evaluate the convective flux at face ∗ in Figure 2, the
following four compatibility relations are utilized (obtained from Equation (12) for different values
of �):

�

nt
du+dp = 0 on �=0 pseudo-acoustic wave

�

nt
du−dp = 0 on �=� pseudo-acoustic wave

�

nt
dv+dp = 0 on �=�/2 pseudo-acoustic wave

�

nt
dv−dp = 0 on �=3�/2 pseudo-acoustic wave

(16)

Corresponding value of nt for each wave angle is obtained from Equation (6). By inserting nt
values in Equations (16) and discretizing them, the following relations are obtained:

p∗− p1+A(u∗−u1) = 0

p∗− p2+B(u∗−u2) = 0

p∗− p3+C(v∗−v3) = 0

p∗− p4+C(v∗−v4) = 0

(17)
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where A, B,C,D are defined as follows:

A = 1
2

(
u1−

√
u21+4�

)

B = 1
2

(
u2+

√
u22+4�

)

C = 1
2

(
v3−

√
v23+4�

)

D = 1
2

(
v4+

√
v24+4�

)

(18)

p∗,u∗ and v∗ are the values at cell interface calculated by Equation (17) using flow properties
at points 1,2,3 and 4 (Figure 2) in the previous time level. Then they are used to determine
convective fluxes at the cell interface. The value of u∗ is determined from the first and second
equations of Equations (17) and v∗ is determined from third and fourth ones. The final value of p∗
is assumed to be the arithmetic average of values obtained from two sets of equations (first–second
and third–fourth in Equations (17)).

With this idea, a genuinely two-dimensional upwind algorithm, called MCB, has been developed
for evaluation of flux vectors at the cell interfaces. In the first-order MCB scheme, flow properties
at points 1, 2 are set to neighborhood cell values and for points 3, 4 interpolated from two cells
containing assumed face. For second-order MCB scheme, the values of point 1 are interpolated
from cells (i+1, j) and (i+2, j) and similarly for point 2 interpolated from cells (i, j) and
(i−1, j). Flow properties at point 3 are interpolated from cells (i, j+1) and (i+1, j+1) and for
point 4 is also done similarly. The mentioned interpolations are similar to what has been done
for two-dimensional CB schemes interpolations in the case of compressible Euler equations such
as [24, 40]. We use one cell value for the first-order accuracy and averaging of two cell values
for the second-order accuracy of the scheme as has been done in References [24, 40] in the case
of compressible Euler equations. By using the flow values at points 3 and 4 in order to evaluate
interface values at face ∗, we take into account the real two-dimensional nature of flow and do
not assume any one-dimensional assumptions. It is obvious that the second-order scheme has a
greater range of stability defined by the Courant–Friedrichs–Lewy (CFL) number, due to a wide
range of interpolation points.

4.2. Viscous flux

To evaluate the viscous fluxes, one needs to compute flow variables derivatives at the cell interfaces
as shown in Figure 3. For example, the first-order derivative at the side AB in Figure 3 is determined
using the secondary cell ANBM as follows:

��

�x

∣∣∣∣
AB

= 1

S′

∫ ∫
S′

��

�x
dS= 1

S′

∮
�S′

�dy= 1

S′
4∑

k=1
�k�yk

= 1

S′ [0.5(�N +�A)�yAN +0.5(�N +�B)�yN B

+0.5(�B +�M )�yBM +0.5(�M +�A)�yMA] (19)
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Figure 3. Pattern for discretization of the viscous terms.

where S′ denotes the area of AMBN, also the �A and �B are calculated by averaging the neigh-
boring cells. Here � is a generic name standing for the flow variables.

4.3. Time integration

The spatially discretized equations form a set of coupled ordinary differential equations that are
integrated in time by an explicit fourth-order Runge–Kutta scheme. The discretized equations are
in the following form:

�W
�t

+Q=0 (20)

After time discretization, one obtains

W(0) = W(n)

W(1) = W(0)− �t

2
Q(0)

W(2) = W(0)− �t

2
Q(1)

W(3) = W(0)−�tQ(2)

W(4) = W(0)− �t

6
(Q(0)+2Q(1)+2Q(2)+Q(3))

(21)

where Q contains the convective and viscous terms. The maximum time step is determined from

CFL=
[√

u2+v2+
√
u2+v2+�

]
�t

�l
(22)

Here, �l is taken as the smallest distance between any cell center with its neighbor cell center.
Applying MCB scheme, the permissible CFL numbers up to 2 have been used.

4.4. Boundary conditions

At solid walls, no-slip boundary conditions are imposed for velocities. The pressure on the wall
is calculated from the normal-momentum equation.
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5. RESULTS AND DISCUSSION

The steady flow of an incompressible viscous fluid in a square cavity has been used for many
years as a benchmark problem by researchers to test their new numerical schemes and solution

Figure 4. Comparison of results for u-velocity profile along vertical line passing through the cavity center
obtained by first-order CB and MCB schemes at Re=1000 on 40×40 grids.

Figure 5. (a) Comparison of results for v-velocity profile along horizontal line passing through the
cavity center obtained by the first-order CB and MCB schemes at Re=1000 on 40×40 grids and (b)

magnification of (a) for x>0.6.
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Figure 6. (a) Comparison of results for u-velocity profile along vertical line passing through the cavity
center obtained by the central, second-order CB and second-order MCB schemes at Re=1000 on 40×40

grids and (b) magnification of (a) for x<0.

Figure 7. Comparison of obtained results for v-velocity profile along horizontal line passing through the
cavity center using second-order CB and MCB schemes at Re=1000 on 40×40 grids.

methods [41–45]. To compare the accuracy and convergence rate of newly proposed MCB scheme
with conventional methods, a series of tests were conducted at different Reynolds numbers. For
example, the solution of steady flow at Re=1000 (based on moving wall velocity and cavity length)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:929–949
DOI: 10.1002/fld



940 S. E. RAZAVI, K. ZAMZAMIAN AND A. FARZADI

Figure 8. Magnified views of extremums in comparison of v-velocity profile along horizontal line passing
through the cavity center using second-order CB and MCB schemes at Re=1000 on 40×40 grids.

Figure 9. Comparison of convergence histories for three studied schemes, Re=1000 on 40×40 grid.

on 40×40 uniform grid is presented. The artificial compressibility parameter has been considered
0.2 in all cases. Results obtained for u-velocity profile along vertical line and v-velocity profile
along horizontal line passing through the center of the cavity using conventional CB scheme and
MCB scheme are presented in Figures 4 and 5, respectively. Both schemes are used in first-order
form and the obtained results are shown in comparison with Ghia et al. [42] benchmark solution.
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Figure 10. Comparison of convergence histories for three studied schemes, Re=5000 on 80×80 grid.

Table I. Comparison of accuracy and convergence behavior of second-order MCB and CB schemes across
the wide range of Reynolds numbers/grids.

Max. permissible U–y total V–x total
CFL Number of iterations dev. (%) dev. (%)

CB MCB CB MCB CB MCB CB MCB

Re=400 20∗20 grid 0.9 1.6 3125 985 39.34 10.07 22.23 15.92
40∗40 grid 0.8 1.6 12327 2534 12.93 5.32 10.45 3.68

Re=1000 20∗20 grid 0.8 1.5 4380 2105 44.14 23.09 46.96 28.83
40∗40 grid 0.9 1.6 14926 5667 24.13 5.62 18.81 8.02
60∗60 grid 0.9 1.6 32247 9582 8.67 2.10 7.37 3.11

Re=5000 40∗40 grid 0.8 1.6 Residuals stabilized 23186 32.01 20.60 49.44 35.80
at 2×10−3 after
14 800 iterations

60∗60 grid 0.9 1.6 50401 45732 20.38 10.90 22.95 15.60
80∗80 grid 0.9 1.7 Residuals stabilized 70321 14.14 8.30 11.40 9.08

at 1.4×10−4 after
100 000 iterations

Re=10000 60∗60 grid 0.8 1.5 92724 87364 28.84 14.92 39.69 28.11
80∗80 grid 0.8 1.6 155208 135718 16.05 11.12 19.81 13.46

100∗100 grid 0.9 1.5 195206 166136 9.44 8.85 8.56 7.74
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Figure 11. Streamlines of primary and secondary vortices, Re=100,1000 on 256×256 uniform grid.

Figure 12. Streamlines of primary and secondary vortices, Re=5000,10000 on 256×256 uniform grid.

Same results for second-order CB and MCB schemes together with second-order central scheme
plus artificial dissipation are presented in Figures 6–8. The enlarged views of the velocity profiles
extremums are also shown. As it is shown in Figures 6–8, the proposed genuinely upwind scheme
provides more accurate results than conventional one-dimensional CB method both in its first- and
second-order forms on the same grid. Although the central scheme is genuinely second order in
this case (due to the Cartesian grid), the second-order MCB scheme even presents more accurate
results than the central scheme.
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Figure 13. Pressure and vorticity contours for Re=5000 on 256×256 uniform grid: (a), (c) Bruneau and
Saad [46] and (b), (d) second-order MCB.

In terms of convergence rate, it is found that the MCB scheme converges much more rapidly
with respect to CB and central schemes. This is the remarkable advantage of MCB in comparison
with CB scheme, where the substantial delays in convergence rate of CB scheme is observed
[23, 30, 31]. The CB, central, and current MCB schemes have been tested for their convergence
rate in which the MCB scheme presented a distinguished shorter iterations at a variety of Reynolds
numbers. Figures 9 and 10 demonstrate typical convergence histories of three mentioned schemes
at Re=1000 on 40×40 grid and Re=5000 on 80×80 grid, in which the MCB scheme presents
the most rapid convergence. It should be noted that the three schemes have been run by their own
maximum permissible CFL numbers. Error norm is defined as

ENORM=
√∑IM

i=1
∑JM

j=1 (pn+1
i, j − pni, j )

2

IM×JM
(23)

where IM and JM are the cell numbers along the x and y directions, respectively.
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Figure 14. Computed u-velocity profiles along the vertical line passing through the cavity center at various
Reynolds numbers on 256×256 uniform grid.
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Figure 15. Computed v-velocity profiles along the horizontal line passing through the cavity center at
various Reynolds numbers on 256×256 uniform grid.
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Figure 16. Comparison of results for vorticities along the vertical and horizontal lines
passing through the cavity center at Re=1000 by second-order MCB scheme on 128×128

uniform grid and Botella and Peyret [47].

Utilizing second-order MCB scheme, the maximum permissible CFL number for Re=1000 on
40×40 uniform grid can be increased up to 2, while for second-order CB and central schemes it
is limited to 0.9 and 1.7, respectively. Slow convergence behavior of CB scheme was observed in
which the number of iterations needed for rms value of �p/�t to reduce to 1×10−3 is 11 965 while
for the central scheme and second-order MCB scheme it is 5938 and 4830, respectively. In order
to compare the accuracy of second-order CB and MCB schemes across the range of Reynolds
numbers/grids, the total deviation from the benchmark solution [42] is defined as follows:

DEV= 1

N

N∑
i=1

∣∣∣∣�−�∗

�∗
∣∣∣∣ (24)

In which N is the number of points, �∗ is the benchmark data and � is the corresponding result
obtained by the scheme at the same value. Detailed analysis of second-order MCB in comparison
with the second-order CB scheme in terms of accuracy, maximum permissible CFL number and the
number of iterations across the wide range of Reynolds numbers/grids is carried out and the results
are represented at Table I. The convergence criterion is satisfied when the rms value of �p/�t
reduces to 1×10−4. As seen in Table I, the MCB scheme demonstrates remarkable advantages
compared with CB in all aspects.

Figures 11 and 12 show streamlines of the 256×256 uniform grid solutions for a wide range
of Reynolds numbers. The pressure and vorticity contours for Re=5000 are shown in Figure 13
comparing with Bruneau and Saad results [46]. It should be noted that the MCB scheme, which
is based on multidimensional nature of flow and inherent upwinding for evaluating convection
fluxes, requires no artificial viscosity even for high Reynolds numbers. Figures 14 and 15 present
the u-velocity profile along a vertical line and v-velocity profile along a horizontal line passing
through the cavity center. These profiles are in good agreement with the well-known benchmark
results of Ghia et al. [42] shown by symbols in the figures.
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Botella and Peyret [47] have presented highly accurate Chebyshev collocation spectral vorticity
data from inside the cavity along vertical and horizontal lines passing through the cavity center at
Re=1000. Comparing the results obtained by MCB scheme with their counterparts in Figure 16,
it is found that the agreement with Botella and Peyret [47] is remarkable.

6. CONCLUSIONS

This study proposes a novel MCB upwind scheme for the simulation of incompressible viscous
flows. The new MCB scheme uses multidimensional characteristic relations, which have been
derived for the first time for incompressible flow equations modified by artificial compressibility. It
takes into account the pseudo-acoustic wave propagation in multidimensional space. The proposed
MCB scheme is used in finite-volume form to evaluate convective fluxes thereby to solve steady
incompressible-driven cavity flow at a wide range of Reynolds numbers. It is concluded that the
new MCB scheme provides more accurate results than conventional CB scheme in both first-
and second-order form on the same grid in the case of driven cavity flow across the wide range
of Reynolds number/grids. Since MCB employs characteristic based relations, it presents stable
solutions and no artificial viscosity is required even at higher Reynolds numbers. The remarkable
advantage of MCB with respect to CB and central schemes is its faster convergence rate, noting
the slow convergence of CB schemes reported in the literature. The computed results using MCB
scheme are in good agreement with the available benchmark solutions in literature.
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